首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有36条查询结果,搜索用时 546 毫秒
1.
An H+ ATPase at the plasma-membrane of guard cells is thought to establish an electrochemical gradient that drives K+ and Cl uptake, resulting in osmotic swelling of the guard cells and stomatal opening. There are, however, conflicting results regarding the effectiveness of the plasma-membrane H+-ATPase inhibitor, vanadate, in inhibiting both H+ extrusion from guard cells and stomatal opening. We found that 1 mM vanadate inhibited light-stimulated stomatal opening in epidermal peels of Commelina communis L. only at KCl concentrations lower than 50 mM. When impermeant n-methylglucamine and HCl (pH 7.2) were substituted for KCl, vanadate inhibition was still not observed at total salt concentrations50 mM. In contrast, in the absence of Cl, when V2O5 was used to buffer KOH, vanadate inhibition of stomatal opening occurred at K+ concentrations as high as 70 mM. Partial vanadate inhibition was observed in the presence of the impermeant anion, iminodiacetic acid (100 mM KHN(CH2CO2H)2). These results indicate that high concentrations of permeant anions prevent vanadate uptake and consequently prevent its inhibitory effect. In support of this hypothesis, an inhibitor of anion uptake, anthracene-9-carboxylic acid, partially prevented vanadate inhibition of stomatal opening. Other anion-uptake inhibitors (1 mM 4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 1 mM 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid, 200 M Zn2+) were not effective. Decreased vanadate inhibition at high Cl/vanadate ratios may result from competition between vanadate and Cl for uptake. Unlike metabolic inhibitors, vanadate did not affect the extent of stomatal closure stimulated by darkness, further indicating that the observed action of vanadate represents a specific inhibition of the guard-cell H+ ATPase.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - FC fusicoccin - SITS 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid We thank Drs. R.T. Leonard (University of California, Riverside, USA) and K.A, Rubinson (Yellow Springs, Oh., USA) for helpful comments on the research, Janet Sherwood (Harvard University) for excellent plant care, and Angela Ciamarra, Anne Gershenson, Gustavo Lara (Harvard University) and Orit Tal (Hebrew University) for valuable technical assistance. This research was supported by a grant from the National Science Foundation (DCB-8904041) to S.M.A.  相似文献   
2.

Background

VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos.

Results and Conclusions

Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.  相似文献   
3.
We investigated the influence of CD40-CD40 ligand-mediated signaling on induction of microbicidal activity against Leishmania major in macrophages from resistant (B6) and susceptible (BALB) mouse strains. CD40 engagement induced leishmanicidal activity in resistant macrophages, but increased parasite replication in susceptible macrophages. CD40 engagement induced comparable TNF-alpha production in macrophages from both strains. However, increased IL-10 production was restricted to susceptible macrophages. Increased parasite replication in susceptible macrophages was prevented by a neutralizing anti-IL-10 antibody. In the presence of IFN-gamma, CD40 engagement induced Leishmania killing by macrophages from both strains. Therefore, the outcome of CD40 signaling on effector responses against L. major depends on host genotype and the cytokine milieu, and a source of IFN-gamma is required for a protective response.  相似文献   
4.
Scorpion beta-toxins that affect the activation of mammalian voltage-gated sodium channels (Navs) have been studied extensively, but little is known about their functional surface and mode of interaction with the channel receptor. To enable a molecular approach to this question, we have established a successful expression system for the anti-mammalian scorpion beta-toxin, Css4, whose effects on rat brain Navs have been well characterized. A recombinant toxin, His-Css4, was obtained when fused to a His tag and a thrombin cleavage site and had similar binding affinity for and effect on Na currents of rat brain sodium channels as those of the native toxin isolated from the scorpion venom. Molecular dissection of His-Css4 elucidated a functional surface of 1245 A2 composed of the following: 1) a cluster of residues associated with the alpha-helix, which includes a putative "hot spot" (this cluster is conserved among scorpion beta-toxins and contains their "pharmacophore"); 2) a hydrophobic cluster associated mainly with the beta2 and beta3 strands, which is likely to confer the specificity for mammalian Navs; 3) a single bioactive residue (Trp-58) in the C-tail; and 4) a negatively charged residue (Glu-15) involved in voltage sensor trapping as inferred from our ability to uncouple toxin binding from activity upon its substitution. This study expands our understanding about the mode of action of scorpion beta-toxins and illuminates differences in the functional surfaces that may dictate their specificities for mammalian versus insect sodium channels.  相似文献   
5.
We isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus an extremely active anti-insect selective depressant toxin, Lqh-dprIT(3). Cloning of Lqh-dprIT(3) revealed a gene family encoding eight putative polypeptide variants (a-h) differing at three positions (37A/G, 50D/E, and 58N/D). All eight toxin variants were expressed in a functional form, and their toxicity to blowfly larvae, binding affinity for cockroach neuronal membranes, and CD spectra were compared. This analysis links Asn-58, which appears in variants a-d, to a toxin conformation associated with high binding affinity for insect sodium channels. Variants e-h, bearing Asp-58, exhibit a different conformation and are less potent. The importance of Asn-58, which is conserved in other depressant toxins, was further validated by construction and analysis of an N58D mutant of the well-characterized depressant toxin, LqhIT(2). Current and voltage clamp assays using the cockroach giant axon have shown that despite the vast difference in potency, the two types of Lqh-dprIT(3) variants (represented by Lqh-dprIT(3)-a and Lqh-dprIT(3)-e) are capable of blocking the action potentials (manifested as flaccid paralysis in blowfly larvae) and shift the voltage dependence of activation to more negative values, which typify the action of beta-toxins. Moreover, the stronger and faster shift in voltage dependence of activation and lack of tail currents observed in the presence of Lqh-dprIT(3)-a suggest an extremely efficient trapping of the voltage sensor compared to that of Lqh-dprIT(3)-e. The current clamp assays revealed that repetitive firing of the axon, which is reflected in contraction paralysis of blowfly larvae, can be obtained with either the less potent Lqh-dprIT(3)-e or the highly potent Lqh-dprIT(3)-a at more negative membrane potentials. Thus, the contraction symptoms in flies are likely to be dominated by the resting potential of neuronal membranes. This study clarifies the electrophysiological basis of the complex symptoms induced by scorpion depressant toxins in insects, and highlights for the first time molecular features involved in their activity.  相似文献   
6.
We have isolated delta-conotoxin EVIA (delta-EVIA), a conopeptide in Conus ermineus venom that contains 32 amino acid residues and a six-cysteine/four-loop framework similar to that of previously described omega-, delta-, microO-, and kappa-conotoxins. However, it displays low sequence homology with the latter conotoxins. delta-EVIA inhibits Na+ channel inactivation with unique tissue specificity upon binding to receptor site 6 of neuronal Na+ channels. Using amphibian myelinated axons and spinal neurons, we showed that delta-EVIA increases the duration of action potentials by inhibiting Na+ channel inactivation. delta-EVIA considerably enhanced nerve terminal excitability and synaptic efficacy at the frog neuromuscular junction but did not affect directly elicited muscle action potentials. The neuronally selective property of delta-EVIA was confirmed by showing that a fluorescent derivative of delta-EVIA labeled motor nerve endings but not skeletal muscle fibers. In a heterologous expression system, delta-EVIA inhibited inactivation of rat neuronal Na+ channel subtypes (rNaV1.2a, rNaV1.3, and rNaV1.6) but did not affect rat skeletal (rNaV1.4) and human cardiac muscle (hNaV1.5) Na+ channel subtypes. delta-EVIA, in the range of concentrations used, is the first conotoxin found to affect neuronal Na+ channels without acting on Na+ channels of skeletal and cardiac muscle. Therefore, it is a unique tool for discriminating voltage-sensitive Na+ channel subtypes and for studying the distribution and modulation mechanisms of neuronal Na+ channels, and it may serve as a lead to design new drugs adapted to treat diseases characterized by defective nerve conduction.  相似文献   
7.
In a recent note to Nature, R. MacKinnon has raised the possibility that potassium channel gating modifiers are able to partition in the phospholipid bilayer of neuronal membranes and that by increasing their partial concentration adjacent to their receptor, they affect channel function with apparent high affinity (Lee and MacKinnon (2004) Nature 430, 232-235). This suggestion was adopted by Smith et al. (Smith, J. J., Alphy, S., Seibert, A. L., and Blumenthal, K. M. (2005) J. Biol. Chem. 280, 11127-11133), who analyzed the partitioning of sodium channel modifiers in liposomes. They found that certain modifiers were able to partition in these artificial membranes, and on this basis, they have extrapolated that scorpion beta-toxins interact with their channel receptor in a similar mechanism as that proposed by MacKinnon. Since this hypothesis has actually raised a new conception, we examined it in binding assays using a number of pharmacologically distinct scorpion beta-toxins and insect and mammalian neuronal membrane preparations, as well as by analyzing the rate by which the toxin effect on gating of Drosophila DmNa(v)1 and rat brain rNa(v)1.2a develops. We show that in general, scorpion beta-toxins do not partition in neuronal membranes and that in the case in which a depressant beta-toxin partitions in insect neuronal membranes, this partitioning is unrelated to its interaction with the receptor site and the effect on the gating properties of the sodium channel. These results negate the hypothesis that the high affinity of beta-toxins for sodium channels is gained by their ability to partition in the phospholipid bilayer and clearly indicate that the receptor site for scorpion beta-toxins is accessible to the extracellular solvent.  相似文献   
8.
Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage.  相似文献   
9.
Brain ischemia has major consequences leading to the apoptosis of astrocytes and neurons. Glucose-regulated protein 78 (GRP78) known for its role in endoplasmic reticulum stress alleviation was discovered on several cell surfaces acting as a receptor for signaling pathways. We have previously described peptides that bind cell surface GRP78 on endothelial cells to induce angiogenesis. We have also reported that ADoPep1 binds cardiomyocytes to prevent apoptosis of ischemic heart cells. In this study we describe the effect of hypoxia on astrocytes and neurons cell surface GRP78. Under hypoxic conditions, there was an increase of more than fivefold in GRP78 on cell surface of neurons while astrocytes were not affected. The addition of the GRP78 binding peptide, ADoPep1, to neurons decreased the percentage of GRP78 positive cells and did not change the percent of astrocytes. However, a significant increase in early and late apoptosis of both astrocytes and neurons under hypoxia was attenuated in the presence of ADoPep1. Intravitreal administration of ADoPep1 to mice in a model of optic nerve crush significantly reduced retinal cell loss after 21 days compared to the crush-damaged eyes without treatment or by control saline vehicle injection. Histological staining demonstrated reduced GRP78 after ADoPep1 treatment. The mechanism of peptide neuroprotection was demonstrated by the inhibition of hypoxia induced caspase 3/7 activity, cytochrome c release and p38 phosphorylation. This study is the first report on hypoxic neuronal and astrocyte cell surface GRP78 and suggests a potential therapeutic target for neuroprotection.  相似文献   
10.
Differential proliferation within defined embryonic anlage is likely to play a major role in morphogenesis. We have identified cell populations in the avian embryo that begin exiting the cell cycle as early as the 25-somite stage. These include first the floor plate and then the roof plate of the neural tube, cells that constitute the lamina terminalis and the diencephalic-mesencephalic junction of the developing brain. Outside the nervous system, the central portion of the notochord contains early postmitotic cells. In the heart, such cells will populate the epimyocardium at the level of the truncus arteriosus exclusively and the endocardial cushions that serve as an anchor for the growing intracardial septa. Surprisingly, the endoderm at the level of the prospective midgut is composed of post-mitotic progenitors. These cells are later found both in the caudal portion of the duodenum and in derivatives adjacent to the umbilical region of the primitive midgut. The possible implications of this early, localized withdrawal from the cell cycle to morphogenetic events and lineage segregation are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号